

Summary of Mu2ell Calorimeter Workshop

Mu2e-II Snowmass21 Workshop September 23, 2020

L. MorescalchiOn behalf of the Mu2e-II Calorimeter group

Calorimeter Workshop

The workshop had a wide participation.. thanks to all the people who contributed to the discussion! We had 7 talks:

09/23/20

Introduction and Overview

- Let's summarize the calorimeter scope in Mu2e/Mu2e-II experiment:
- work as an independent trigger for the experiment:
 - a good energy resolution is needed → lower than 10% from 50 MeV
- Seed for the tracker reconstruction and provide a good T0
 - good time resolution is needed \rightarrow lower than 500 ps from 50 MeV
- 3. **PID**
 - Good energy and time resolutions (10% and 500 ps)
- Provide independent (from STM) muon stop normalization
 - With dedicated LYSO or LaBr crystals
- What is changing is the beam intensity.. So we have tighter requirements in the radiation hardness of the components and in the capacity to solve pileup

Radiation Hardness Requirements

These are the expected values for TID on the crystals of both disks:

Disk1: Inner: $(60x 5 x 3 \rightarrow 900 \text{ krad})$ Outer: $((15x5x3) \rightarrow 180 \text{ krad})$

Disk2: Inner: $(10x 5 x 3) \rightarrow 150krad$ Outer: $(5x5x3) \rightarrow 75 \text{ krad}$

These are the expected values for TID and neutron fluence on the photosensors:

Disk1: Inner:

 $(10x2x 5 x 3) \rightarrow 300 \text{ krad}$

Outer: $(10x0.5x5x3) \rightarrow 75$ krad

Disk2:

Inner: $(10x1x 5 x 3) \rightarrow 150 \text{ krad}$

Outer = $(10x0.5x5x3) \rightarrow 75 \text{ krad}$

Latest SiPM Dose test indicated no hints of deterioration up to 80 krad

Disk $1 = 10 \times 6 \times 10^{10} \times 5 \times 3 = 900 \times 10^{10} = 9 \times 10^{12}$

Neutron fluence up to 1013 n_1MeV/cm2

BaF2 as Baseline Solution

BaF₂ crystal has a ultrafast scintillation at 220 nm with 0.5 ns decay time and a similar intensity as CsI, and may survive 100 Mrad. Its slow scintillation at 300 nm with 650 ns decay time, however, causes pileup in a high rate environment.

			
	LSO/LYSO	Csl	BaF ₂
Density (g/cm³)	7.4	4.51	4.89
Melting point (°C)	2050	621	1280
Radiation Length (cm)	1.14	1.86	2.03
Molière Radius (cm)	2.07	3.57	3.1
Interaction Length (cm)	20.9	39.3	30.7
Z value	64.8	54	51.6
dE/dX (MeV/cm)	9.55	5.56	6.52
Emission Peak ^a (nm)	420	310	300 220
Refractive Index ^b	1.82	1.95	1.5
Polativa Light Violda, [©]	100	3.6	42
Relative Light Yield ^{a,c}		1.1	4.1
Decay Time® (ns)	40	30	650
Decay Time ^a (ns)	40	6	0.5
d(LY)/dT ^d (%/°C)	-0.2	-1.4	-1.9
u(L1)/u1 (%/ C)			0.1

 Slow suppression may be achieved by rare earth (Y, La and Ce) doping, and/or solar-blind photo-detectors, e.g. Cs-Te, K-Cs-Te and Rb-Te cathode

Yttrium Doped Small BaF2 Samples

Y doping can suppress slow scintillation component of BaF2

Yttrium Doped Large BaF2 Crystals

 \square Achievable performance of 20 cm long BaF₂:Y crystals: LO_E>100 p.e./MeV, F/S>2, <10% LRU and $|\delta_{\rm F}|$ < 3%/X₀. R&D will continue to optimize yttrium doping in large size BaF₂:Y crystals for Mu2e-II.

09/23/20

BaF2 Radiation Hardness

□ 20 cm long BaF₂ crystals show ~50% LO loss after 120 Mrad. 5 mm thick BaF₂ plates show less than 20% LO after 1 x 10^{15} p/cm² or 3.6 x 10^{15} n_{eq}/cm², indicating that BaF₂ of short light path may be used in a severe radiation environment.

y-Ray
Induced
Damage in
Large BaF2

 Neutrons induced damage

Preliminary BaF2:Y Radiation Hardness

 Four 10x10x10 mm³ BaF2:Y samples from SICCAS with different doping concentration have been irradiated with neutrons at IBR-2M facility in Dubna

Number of neutrons has been monitored using a nickel wire: about 2.3x10^14 n/cm^2 passed through the samples. The neutrons energy spectrum is unknown, so it's difficult to compute fluence in 1 MeVeq n

Y doping	0% (pure)	1at.%	3at.%	5at.%
Fast	7.6%	16.1%	16.8%	16.3%
Slow	6.8%	14.4	15.5	13.4
Total	6.9%	14.7%	15.3%	14.0%

- The light yield losses after neutron irradiation are almost two times higher for the yttrium doped samples compared to the losses in the pure BaF_2 sample
- The light yield loss of the fast component after neutron irradiation is higher compared with the slow component on all samples

Obviously, more study is required in a wider range of radiation doses...

CIT/FBK/JPL Solar Blind SiPM – 3 Layers

- Building on our experience with a large area APD developed with RMD, we have adopted a phased development approach
 - Build a three layer ALD filter on a 6x6 mm NUV SiPM structure, exploring different SiNx passivation layers, guard ring structures,
 - 2. Fabricate 2x3 arrays of the 6x6 mm chips, biased in series parallel configuration à la MEG and Mu2e to read out larger crystals
 - 3. Improve slow component rejection with more sophisticated filters
 - 4. Use delta doping and backside illumination to improve PDE, the effectiveness of the filter and timing performance

FBK #611 + BaF2: Source and Cosmic Rays

- FBK SiPM #611, dimension 6x6 mm, operated at 29.5V
- BaF2 dimension 1" x 1" x 1", wrapped with teflon with an opening of 6x6 (mm)
- Cosmic ray deposits 6.374 MeV/cm * 2.54 cm = 16.2MeV -> 11pe/MeV
- With 2x3 array are expected 60-70 pe/MeV

- An AmBe neutron source emits copious
 4.4 MeV gammas
- FBK SiPM #611 operated at 29.5V
- BaF₂ dimension 9 x 9 x 9 mm, wrapped with teflon with an opening of 6x6 mm
- 3400 (adc)/29.1(pe/adc) = 117 pe
- 117 pe / 4.4 MeV = 27 pe/MeV

FBK#611@29.5V 1-inch BaF2 Cosmic Ray

Future Plans for Solar Blind SiPMs

A 5 layer filter has been developed with performance adequate for Mu2e-II:

• It can be implemented in a delta-doped, back illuminated version that will have improved QE and timing characteristics:

AIGaN Photocathodes in MCP

AlGaN cathodes with cut at 260 and 280 nm were assembled with 2 MCPs and anode in metal package to produce device which has 18 mm input window.

AIGaN MCP – Cosmic Rays Test

Experimental setup to measure energy losses spectrum for zenith cosmic rays.

Typical response of BaF_2 + MCP device with $Al_{0.55}Ga_{0.45}N$:Mg cathode for zenith cosmic rays. One can see sharp fast component response, and slow component signal for time less than 20 ns goes to noise level.

AIGaN Schottky Diode

□AlGaN Schottky barrier photodiode for BaF₂ fast component selection is proposed

Metal layer
AlGaN:Si layers

Buffer layers

Al₂O₃ substrate

Dark current ~0.5 uA at -5V QE is 22% @ 280nm

We can use AlGaN to grow structure for Schottky photodiode. At the moment we have photodiodes with 50 mA/W sensitivity for $\frac{\text{Vbias}}{\text{Vbias}} = 0$

Sensors with nanoparticle filters

Quantum Confinement changes material properties when particle size < electron wavelength

Stokes Shift is difference between absorption and emission wavelength

Eg increases with decreasing particle size -> *UV photon absorption*

Nanoparticles deposited on clear plastic tape (UTA partner)

Published result: SR 8:10515 (2018)

Enhanced response for ¾ samples: 200 nm < λ < 250 nm

Sensors with nanoparticle filters

Overlap of slow component and nanoparticle emission:

1) wave-shift to longer wavelength, or 2) resin coating on the SiPM

9/21/20

Perspective for Nanoparticles and BaF2

UTA nanoparticles <u>deposited</u> <u>directly on the resin (face) of</u> the SiPM

Enhanced response of coated SiPM seen in the wavelength range from 200 nm – 240 nm compared to uncoated sensor

Without any optimization, ratio of coated to uncoated in the 200 – 240 nm range is ~factor of 10 greater than in the region > 250 nm!

We have tested at least 2 nanoparticle candidates which show sensitivity in the desired wavelength range and, in addition, much reduced sensitivity without the need for gdditional filters in the wavelength range > 250 nm

Next Generation Calorimeter DAQ

Current readout scheme (200 MHz ADCs) is not ok for Mu2e II: we expect more (x3) signals with a length o(30 nsec) and a rise time o(5 nsec)

- ☐ Ultra Fast ADC (1 GHz ...)
- ☐ TDC
- ☐ TDC + ADC

- Radiation Hardness requirements for electronics increases up to o(1Mrad) !!
 - Only Xilinx Virtex5-QV FPGA, that space grade qualified, meets this requirement in 2020
 - ADC need to be qualified, while TDC chip has been qualified by CERN

1. Ultra Fast ADC

- Ultra Fast ADCs (1 GHz) would solve the pileup issue, but bandwidth would increase
- Ultra Fast ADCs are expensive (400 \$/unit), power hungry and each needs 4 JESD 204
 FPGA serializers
 - ➤ A 20 channels board would consume 60-100 W and would need 40 serializers to handle ADCs data, so the number of FPGA/board will increase to 3
- Calculating parameters in real-time and/or developing a a L0 trigger system can help to save bandwidth and storage room

Next Generation Calorimeter DAQ

2. TDC

- TDCs offer a very good time resolution and a good energy resolution is signal shape is stable
- TDCs don't solve the pileup easily
- CERN developed picoTDC, a new cheap RadHard
 64 channels TDC chip with a 3 ps reaolution
- There is also a discriminator chip from CERN: FastIC

3. TDC + Slow ADC

- To solve pile-up problem we could use a TDC (PicoTDC) + a relatively slow ADC
- How much slow? If signals o(30 nsec) 100 or 200 Msamples should be ok.
- We could still try to fuse TDC and ADC data on the flight and directly send hit parameters to DAQ ...
 - We will need a lot of simulations and laboratory R&D to choose the best solution in terms of performance and cost ...

Considerations

List of R&D tests for whatever proposed solution

- → Measure resistance to doses
- → Measure resistance to neutrons up to 10¹³ n_1MeV/cm²
- → Control behavior at low temperatures
- → Measure resistance for large integrated charge

